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ABSTRACT

The energy-dependent reactor diffusion equation can be

expanded in a series of products of purely spectral and purely

spatial components. A convenient set of base spectra are the

coefficients when the fundauental mode spectrum is expressed

as a power series in B 2 . The algorithm for forming these

spectra is relatively simple. Sore of the properties of these

spectra are exhibited, and the reduction of the reactor prob-

lem to one of definable overlapping diffusion groups is

explored.





INTRODUCTION

The concept of buckling was introduced in the first explorations of

reactors for several reasons:

(1) The reactors were large and almost all of their volume was des-

cribable by the fundamental spatial and spectral mode.

(2) Reflector savings were relatively small, and the buckling pro-

vided an accurate estimate of critical dimensions.

(3) With infinite multiplication only slightly greater than unity,

measurement of buckling, combined with estimation of the form of P(B) —

from experiment or theory permitted more accurate determination of k.

than any other technique.

The first reactors were large, natural-uranium-fueled ones, to which

these comments are very pertinent. However, the early fast reactors were

small, highly reflected, and with k. in the core around 2. To such reac-

tors, the concept of buckling was not useful, and the main theoretical

approaches emphasize transport and multigroup calculations, with the

fundamental mode only one of many important spatial modes in the reactor.

However, the relative simplicity of buckling measurements prompted

experimental groups, first at Los Alamos and then at Argonne' to attempt

to determine buckling and bring its measurements into consonance with the

theoretical models available. A particularly large effort was expended

in determining the (negative) buckling of an assembly of natural uranium.2

As the design of fast reactors for central-station power generation

evolved, it became apparent that these reactors were reverting toward

systems for which the buckling could again be a useful parameter. The
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incorporation of large amounts of 238U into the core to facilitate in-

ternal breeding brought values of k . into the range 1.0-1.5. Even at

the high power densities of breeders, the size of reactor cores to supply

heat for 1000 MW of electrical generation becomes large enough so that we

expect major portions of the core to be only mildly influenced by reflec-

tor transients. With understanding of the behavior of reflector savings,

the estimation or measurement of buckling then becomes a useful predictor

of criticality in fast reactors. Thus, Hummel was able, through the

ELMOE code,
3
 to use Changes in buckling of reactors to separate reactivity

effects which are intrinsic in the core from those which are reflector-

induced. In France, there have been a number of experiments on buckling,

both to determine core critical properties and to use buckling as a

measure of reactivity difference in substitution experiments.
4

Up to now, the interpretation of buckling experiments has been pri-

marily a matter of comparing measured values with those deduced from such

basic rPlculations as ELMOE. Where discrepancies appear, the cross-section

set itself must bear the burden. This is entirely proper in the ultimate;

however, the discovery of adjustments to nuclear data is much eased if a

simpler interpretation of buckling can lead to another, easily charac-

terized integral parameter. In thermal reactors, as had been mentioned,

this interpretation is provided by the relation

k P(B)	 1,	 (1)

where P(B) is the nonleakage probability associated with buckling B2.

Equation (1) holds for critical systems, which is a strong experimental

condition. In thermal reactors, P(B) is at least partly measurable,

since it is related to migration during slowing down, which is measurable
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and only slightly perturbed by absorption, and to thermal neutron migra-

tion which is either accurately described by diffusion theory in the

global sense, or is small. The standard interpretation of P(B) is as the

Fourier transform of the spatial distribution of flux leading to absorp-

tion, from a point source of fission neu luns in an infinite medium

whose slowing-down and absorption characteristics are identical with

those of the reactor, but in which fission does not occur (Weinberg5).

This (correct) interpretation has discouraged attempts to estimate

P(B) for fast reactors. It is well-nigh impossible to mock up a fast

reactor core for migration measurements, and simultaneously to suppress

fission. Thus, estimation of P(B) is limited to the examination of the

variation of B 2 with, for example, v, in ELNOE-type codes. This proce-

dure is again correct; however, it suffers from the fact that inference

of P(B) for negative or complex B 2 , which is often desirable to estimate

reflector-induced transients, is a very imprecise extrapolation.

The first portion of this paper is the presentation of a method for

deriving P(B) as a power series in B 2 , using purely spectral calculations.

The significance of this technique lies not only in its ability to explore

P(B) for negative or complex B2, but also in the fact that the spec.	 a

associated with powers of B 2 have in themselves interesting properties

Which suggest the utility of overlapping multigroup formalisms and Lie

series for calculating global properties of fast reactors.

A POWER SERIES FOR P(B)

Assuming diffusion theory, the space-energy equations for any reac-

tor may be written as:
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-D(E)v24)(,E) + [-E_ a (E) + E s (E)].(;,E ) -	 s (E106",E1P s
(E°• E) dE'

= X(E )	 vE (E')0(,E') dE- .
	 (2)

0

The symbols in Eq. (2) have their canonical meanings. The only

unusual ones are Ps (E 	 E), the probability that a scattering event for

a neu Lion of energy E' will lead to its emergence at energy E, and x(E),

the fission spectrum. If there are several fissionable isotopes, vE f is

interpreted as Sum v,E fi for the "i" isotopes. In addition to the assump-
i

tions of diffusion theory, Eq. (2) assumes that scattering is isotropic,

which is virtually within diffusion theory, and that the fission spectrum

is invariant to fissioning species. This latter assumption is almost

correct if there is a dominant fissionable material, and is easily set

right by defining a 	 it is made only to simplify notation.

Suppose there exists a fundamental mode and a critical reactor.

Then the fundamental mode may be written

0 0 ( .' ,E) 	 f0(1:.,B0)S0(E)	 (3)

where

V 2 f0 (-' B ) = -B 2 f (i" B )0 0	 ' 0	 •
	 (4)

Substitution of Eqs. (3) and (4) into Eq. (2) permits factorization

and division of fo, and leads to

[B2D(E) + Ea(E) + Es(E)]S0 (E) - I Es(E')S (E')Ps(E°	 E) dE"

= x(E)

	

	 vE(E')S0(E') dE' .	 (5)
o
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If we integrate Eq. (5) over all E, remembering that x(E) is norma-

lized to unity and that the integral of P s over emergent energies is also

unity, we get:

[Bp(E) + E
a (E) So(E) dE = 

I vE
f (E')S 0 (E')

Useful relations may also be derived for an idealized infinite-

medium experiment. If an infinite medium has a unit fission-spectrum

source per unit volume, then the spectrum of neutrons would be given by

S, where S is the spectrum which solves:

E
a
(E) + E

s
(1S (E) - I E s (E')S (E')P (E'	 E) dE' = x(E) .

Integration over all energies reveals that since the neutiun produc-

tion rate, I x dE, is unity, so is the absorption rate, I E sS. dE. If

we now ask what the production rate would be if the spectrum were per-

mitted to cause fission, it would be I vE fS. dE. Thus,

k =	 vEf
S dE .

The fact that systems with small buck lings have spectra approaching

those of infinite media is well known. It suggests that we look for

solutions of So in the form of

2
S o =	 I (-Bo )

n
 Gn

n=0

with

(6)

(7)

(8)

(9)

Go = Soo 	
(10)





1

(-11)n
n=0

E
a
(E) + E

s 
(E) G

n
(E) -	 En(E')Gn (E')P (E' • E) dE

CO

Substitution of Eq. (9) into Eq. (5) yields:

- x(E) v
f
E (E)G

n (E-) dE	 =	 ( - 132o) D(E)Gn _ 1 (E) •	 (11)

	

0 	 n=1	 -

We ncw define Gn by the relation

r
i
a
(E) + E

a
(E -):1G

n+1(E) - I E s (E')Gn+1 (E1Ps (E° • E) dE' = D(E)Gn (E) •

(12)

Substituting Eq. (12) into Eq. (11) gives:

r-

	

-E
a
(E) + E

s
(E)_]G (E)	 E s (E1G (E')P s

(E'	 E) dE '

	

0
L-

	 0
'E

= X(E)vE f (E - )	 (-B
2
)G (E') dE' .0 n

	

0	 n=0

Since G 0 = S ' we may substitute Eq. (7) to get

	

I1 =

	

	 (-1320) 	1	 v
f

E (E')G
n
(E') dE .	 (14)

n=0	 0 

From Eq. (6), we next get

(13)

1-2
k. I (-Bo)n

n=0
vE (E')G(E') dE'

0	 f	
n

vE
f
(E')G(E') dE'

0

All that remains is to define

= 1 .	 (15)





gn	
vE

f
(E')G

n
(E') dE'

0 I
vEf(E')G0(E') dE' ,	 (16)

0

and to identify Eq. (15) with Eq. (1). This yields

CO

	P(B) =	 y g1.(-132)- .	 (17)
n=0

(See footnote a.)

The above proof suggests an algorithm for computing G n and gn . We

take as given a program which will solve for the infinite medium spectrum

with a fission spectrum source. That is, we assume that we have means of

solving Eq. (7); a subroutine of ELMOE will do as an example. Then, the

Gn may be computed by successive substitution of D G n_l for x, and the gn

by direct quadrature. The result is a purely spectral calculation of P(B).

EXAMPLE: AN AGING SYSTEM

We may illustrate the process analytically by taking as an illustra-

tion a system with the following properties:

(a) monoenergetic fission source at energy E 0 , lethargy 0;

(b) slowing-down in a continuous mode without absorption to

lethargy U; and

(c) absorption and fission without further migration on reaching

lethargy U.

These assumptions mean that Eq. (5) may be written as

BD S + 2— p s] - k6(u) ussd0	 0	 s 0	 -Du (18)





where we have converted to lethargy space, and need only consider u in

(0,U). Equation (7) becomes

—a Ez S	 = 6(u) .
au

Then,

G
o

G2

Etc.

=

=

1

ES

1

EE

E
S

l u	D du' (20)

j 0 EEs(u-)

iu _2_ (,,) du, ru _2_ (u") 
du"

J o u s	 Jo U

Neu Lin age is given by

D du
di i(0)

become:

G,

n!

=

=

0

1

SI

IT	 5 G2 	 =
1

S

12- •

2

(21)

(22)

(23)

Us

so that Eqs.	 (20)

1
Go 

= —
us

In general,

=	 1
G
n

Further,

;10-1-

(19)
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J 
y E fGn du = k. (E0 sG )	 (24)

n T(0)

Therefore,

_ T(U)n 

n!

and

P(B)	 (B2)fl T(U 0) 
exp 1-B2 T(U)/	 .

n!

This is, of course, the classical value.

A COMENT ON THE G-SPECTRA OF FAST REACTORS

Typical fast reactors have essentially three spectral regions:

(1) At high energies, the spectrum is dominated by the interplay be-

tween the fission-spectrum source and inelastic scattering events involving

large energy losses. Absorption is adequately represented by a amooth

curve, both because of the extreme validity of the narrow resonance

approximation and the smearing action of Doppler broadening on resonances.

(2) At intermediate energies, roughly 5-100 keV, the spectrum can

be calculated quite well as a superposition of a gross spectrum, generated

from continuous slowing-down theory with effective smeared absorption,

and detailed resonance calculation.

(3) At lower energies, the continuous slowing-down model remains

useful, but one must Li	 eat some resonances (such as those in sodium) in

detail.

Mbst of the need for representation of the spectrum in many groups

arises from the high-energy groups. In principle, continuous slowing-

down should be adequate to describe energy transfer at the lower energies.

(25)

(26)





vE (E) 
J 

x(E)S(E) dE .	 (27)
f

For the infinite

[-E_
a
(E)	 + E

s
(E)

system, the adjoint spectrum is the solution of

ST (E)	 - E	 (E)	 S4-(E')Ps (E	
E') dE'	 vE

f
(E)	 .

s	 0•0
(28)
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Now, if we note the tLwnd of the G-spectra for the aging system, we

observe that each G
n+1 

is softer than the previous G. We expect this

to hold true for fast reactors as well. In essence, then, we may expect

that, after the first few Gn , we can switch to a much simpler mathematical

format to derive higher Gl ; solution of the continuous slowing-down equa-

tions involves simple quadrature in u. Ultimately, the G n should approach

hignly peaked functions which may be well approximated analytically

THE ADJOINT FUNCTION

The same procedure as recommended for the flux may be used to deter-

mine an adjoint expansion.

The adjoint equation analogous to Eq. (5) is

[BD(E) + E
a
(E) + E

s
(HS -1- (E) - E

s
(E) I S 1- (E')P (E • E') dE'0

We may write a system of equations such that:

Go

(E)P(E	 ')E	 dE'(E a + E )G-1.	 - E
s 

f
o 

G
n+1	 ss	 n+1

=

=

S

D C
n

(29)

Then we may write





LO-.11L
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(30)
2,n-+

S
+ 

= I (-Bo) U
n ,0

0

provided that

J
- x(E-) y (-13)ne(E') dE' = 1	 (31)

0	 '

is satisfied.

Let us multiply Eq. (28) by G o (E) —or S(E) -- and integrate over

energy. This leads to the following equation after reversal of integra-

tion order and replacement of S
+ 

by Go:

G1-0 (E) dE f E + E 1 G0 - I E G (E)P
s
(E° • E) dE'	 = I vE f(E)G o (E)

0	 E	
dE .

k. a	 a)	 s 0
J	 J o

(32)

Substituting Eq. (7) for the term in braces in Eq. (32),

G x dE =	 vE G
0
 dE = k .

f 

We may thus define a critical condition

k P4- (B 2 ) = 1	 (34)

where

CO

P4- (B 0 )	 y
0

(35)

- 1- x(E)Gn dE	 x(E)G0 dE-
Jo
E

It is well known that the buckling spectrum of flux and adjoint are

identical. From this, it follows that

(33)
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P-1-(B)	 = P(B)

(36)

gn = gn •

The adjoint function has the property of orthogonality to the real

flux spectrum in the sense that:

If B 2 are the several values of B 2 Which satisfy the critical equa-

tion [(17) or (34)]; and if

B2 are all different.

Then

S (E)S
+
(E)D(E) dE = 0

0 n	 m
for m / n ,	 (37)

APPLICATION OF THE G-SPECTRA

The properties of the G spectra which can be applied stem from their

(assumed) completeness and I.'	 m the form of expansion of the fundamental

Rode. If the G
n
 are a complete set (which, except for pathological cases,

they are), then they may perhaps be of use in defining alternate multigroup

systems to the usual step-function-in-energy system. In particular, such

a system might have the first group as fundamental mode, with other group

spectra orthogonal to it. Then it would be possible to deal with transients,

as introduced by reflectors and boundaries, more directly.

MJLTI GROUP FORMULATIONS

In a multigroup model of standard type, (1)(,E) is replaced by an

n-vector,	 where the "n" components of 4> represent the flux in
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specified E-regions, D and E a are diagonal matrices, integration over vEf

is replaced by premultiplication by an n-adjoint-vector, x(E) becomes a

vector X, and the scattering law is replaced by a transfer matrix.

The fundamental mode has a spectrum described by an eigenvector, and

these are n-1 other eigenvectors which represent the higher-mode spectra.

B2 is often complex for n > 0, and the higher modes have complex spectra;

however, n-1 linearly independent real spectra, all of which are ortho-

gonal to the fundamental mode, can be synthesized flun them.

The critical equation in an n-group system is always expressible in

the form

=	 akB2k .
k=0

This means that the criterion for good representation of any system by a

multigroup scheme might by that 1/P(B) should be a series which terminates

after a certain number of pwers of B2.

The most direct method of determining this is by formal inversion of

P(B). We may write

1/P(B) =	 akB2k ,	 (39)

k=0

and derive the ak iteratively from

ak =

ao = 1

2.=1

	

/
ak-Vg9,

Because ak and gz are dimensional, and because of cumulation of

ell	 rs, it is recommended that convergence be examined by inspecting

if this number suddenly becomes small, an n-group approxi-
n+1 n-1 n'

(38)
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mation is justified. If, after many terms have been examined, there

seems to be an approach to a constant ratio, an age-like solution can be

suspected, and examination of the convergence of a k to aT
k
/k!, where a

and T are constants, is recommended.

If we have an N group system, G N and higher will be linear combina-

tions of Go , . . •N-1G . Thus, all necessary relations can be obtained by
-

computing 2N functions ---N fluxes and adjoints, or 2N fluxes, which is

algorithmically simpler.

Note that for a true N-group system, all an for n > N must vanish.

Thus, one should examine a a /a2etc., for a few terms before con-
n+2 n-2 n

cluding that an N-group approximation is valid.

A mathematically more satisfactory way of determining the validity

of an N-group approach is to determine the degree to which x/D may be

represented by a linear combination of Go . . .GN_1 . If this is the case,

G
N-1 

is a linear curbination of x/D and g's of lower order, whence G N et

seq. also are (from the recursion relations for G).

The equivalent statement is that GN would likewise be a linear combi-

nation of Go . . . GN_1 . A necessary condition for this to be the case

is the vanishing of the determinant of g's to order 2N:

g og i • - • g,

= 0.

gN	 • • ..g2N

This effectively states that there is a linear combination, P, of

Go . . . G	 such that





[g 1 )
N2+N

[TT rol
0	 j

(43)

	Jo Gm
D(G

N -
	 dE = 0	 m = 0, . . . N-1

and
	

(42)

	

0 vE f (GN -	 dE
	

0.

It also means that an+, . . . a2N all vanish. In other words, if

the critical equation of form (39) has any terms of order greater than

B2N , they start at B4N+2 . While not mathematically impossible, such

cases must be classified as pathological.

For comparison, the N-th order determinant for an age theory system

would be of the order of:

2-4A
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=

The determinant in Eq. (41) would have to be small compared to expression

(43) in order to justify an N-group theory.

Once an N group theory has been established, we have some liberty in

defining the groups which we shall use. All of them are, of course,

linear combinations of the Gn
.

The obvious choice is to define our groups orthogonal to each other,

and to take as our first group the fundamental mode. To express it in

	

terms of Go . . . G. 	 that GN et seq. are themselves

linear combinations of them), we start with the relation

g
N+k 

= -	 (-)Zg

	

R=1	
N+k-el

(1414)
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which follows from (40) and the vanishing of a z for R. > N. It may now

be shown that this corresponds to a similar expression for the G's:

( - )na
n
G
n+k-n 

. 0 ,	 (k	 0) .	 (45)
n=0

We now take Eq. (9), multiplying S o by k. on the left-hand side and

the infinite sum in Eq. (9) by the series expression for k . in terms of
2

Bo [Eq.	 (38) with n = N). 	 The use of Eq.

N-1	 N-1
1

(-)G	 a	 B
22,

=	 --	 1	 nSo	
Z-n 0

k	 n = 0	 n 9.=n

N-1
1

29.BO	 (-)nat-nGn
k	 k=0	 n=0

(45) then leads to:

(46)

Other groups may be defined to illustrate the transient spatial be-

havior of specific reactions. We may choose a group for one reaction which

is orthogonal to the fundamental; a group for another which is orthogonal

to the first two; and so on until we have N-2 reactions illustrated. Then

the first reaction has a spatial dependence derived from the fundamental

mode and the first of these synthetic groups; the spatial dependence of

the second reaction depends on these two, plus the next synthetic group;

and so on. (With the fundamental mode and N-2 such transients, we have a

"ghost" group left over; at least one such "ghost" is needed in order to

preserve group orthogonality.)

THE FISSION TRANSIENT

We illustrate the formation of groups by looking at a particularly

straightforward one to synthesize. This is that transient which



#
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incorporates all the fission rate which is not part of the fundamental mode.

We look for a spectrum of the form aS o - Bx/D Sf which is orthogonal to

S0. Then, all other spectra which are linearly independent of S o and Sf

will be orthogonal to them [in the I A+(E)D(E)B(E) dE sense]. It follows

that only S o and Sf will have nonvanishing integrals over vEf.

If we now adopt the notation:

(AB)
	

A-1-(E)D(E)B(E) dE ,	 (47)

the desired function is

(s o X) s o - (So so) X	 sf
	 (48)

The representation of x/D as a function of the Gn is now necessary.

Formally, we may write

x =	 y XnGn	 ( 49)

.2-6A

vE f 1.)

DD
5
	 (50)

and obtain the xn by solution of:

g0 , g 1,g2,

g 1Ig2,g 3,

•	 •

•	 •

•

•

X0

XI

XI

^	 ^

go

g1

(51)

Equation (51) is operationally difficult to solve, but conceptually

th_ determinant of the matrix in Eq. (51) is, for a finite





(Q i.Q) =
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approximation, the same one as is used lo test the validity of a multigroup

approximation of finite order.

THE MULTIGROUP EQUATIONS

We finish this first part of the specification of the method by seeing

how we construct multigroup equations. Let us assume that we have completed

the construction of S o , Sf . . ., etc., in such a fashion that each one is

orthogonal to the others. Let us further assume that we have, by hook or

crook, arranged for the multigroup representation to be finite (this is a

convenience rather than a necessity). Finally, let us label So = Q1,

Sf = Q 2 . . . up to QN . Thus, I have a set of

Q . 	 =	 X C. .G.
j=1 13 J-1

where all the C.. have been defined. Similarly,
ij

Qi =	 X C..G.ij 3-1
j=1

and

0,	 i g j	 (54)

We now write

06",E) =	 X Qk(E)fk(i")

k=1

-2-7A

(52)

(53)

(55)





-

and substitute into Eq. (2),

Qk (E)D(E)V 2 fh
k=1

+/	 fk (r)
k=1

E a (E) Es(9Qk(E)

E(E')P(E' E)Q (E') dE'ss
E

N

= X( E )	 fk(r)	 vEf(E')Qk(E') dE' .
k=1	 0

20

(56)

Multiplying by Q-1.1 and integrating (remember, Q1 = So) gives

E
f

N E f

(Q1Q1, V2f l

which reduces to

(v2	 4.	 132)f 1o'

/

k=1

.	 0

fk
Q\ - D B02 1Q .d =k/

D	 /
/	 fk

k=1
— Qk
D

as it should.

Multiplication by Q2 and integrating gives:

--	 —

(Q12Q2)	 (Q2Q2) 

- (Q2Q2)72f2 + 	 fk A 2k -	 /	 f	 f 2
\Q 1Q1) 1 OA\

The A k are obtained by substituting the expansions for Q n [into

Eq. (52)] into Eq. (57), using the recursion relations for Gk , and sub-

stituting back the resulting expressions from G into Q.

Similar expressions are found by integrating over Q n
 for n > 2. The

A set of N equations, of which the first, as fundamental mode,

(58)

(57)
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is independent of the rest. The other N-1 equations represent a full

matrix of equations with sources to the set coming from the fundamental

mode. The Laplacian term is purely diagonal. The set is therefore

determinate.

Each spectrum defines a Dk -- an effective diffusion coefficient —

such that DkVfk is continuous aLluss nornal boundaries. Also, each fk

is continuous (these properties derive from the detailed spectral con-

tinuities of the original equation). In general, it will prove impossible

to satisfy all boundary conditions unless the reactor is critical.

REFLECTORS

Reflectors are, in general, nonmultiplying; therefore the x terns

will be small or vanish. Reflectors also have a different scattering

maxtrix from cores, and different absorption.

The equations for the reflector must be obtained as in the core.

It is assumed that the same set of orthogonal spectra describe the entire

problem. Then the reflector equations become:

D(E)Q	
--

- (Q Q \v2 f +	 f
k k/ rk	 rk

ck 
+ dE E

a 
+ E

s -
	 EsQPs (E' • E)

	

k=1	
dE'

0 Dr (E)	 r	 r	 E

D (E)

X 	  Qk	 (E)	 f
rk jo 

vE frQ(E') dE' .
0	 Dr (E)	 it=1

The appropriate integrals must be evaluated to find a set of group

equations for the frk.

(59)
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FOOTNOTE

a
A mathematically rigorous proof would require the demonstration that

the G
n
 defined by Eqs. (10) and (12) form a complete set of functions in

the space defined by solutions of Eq. (5). Our proof is equivalent to

replacing the coefficient of x in Eq. (5) by an arbitrary multiplier,

assuming convergence of gn , and identifying the multiplier as unity for a

critical system. We think that it illustrates the physics better. Note

also that we could have gotten to Eq. (4) directly by substituting

Eqs. (9), (10), and (12) into Eq. (6).
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